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Abstract
We study stationary solutions of the nonlinear Schrödinger equation in the
presence of small but non-zero third-order dispersion (TOD). Using a singular
perturbation theory around the ideal soliton we calculate these solutions up to
the second order in the TOD coefficient. The existence and linear stability of
the stationary solutions is proved for any finite order of the perturbation theory.
The results obtained by our numerical simulations of the nonlinear Schrödinger
equation are in very good agreement with theory. The significance of these
results for fibre optic communication systems is discussed.

PACS numbers: 42.81.Dp, 42.81.−i, 42.65.Tg

1. Introduction

Optical solitons have been the subject of extensive research efforts during the past decades
due to their potential applications in long-distance communication systems and in optical
interconnect technologies [1]. It is by now well established that the propagation of solitons
in optical fibres can be described by the nonlinear Schrödinger equation (NLSE) [2, 3]. For
ideal soliton propagation, the effects of refractive nonlinearity and second-order dispersion
exactly balance each other. In this case, the soliton propagates without any changes in its
parameters and without emitting any radiation, i.e., it is stationary. In practice, however,
there exist physical processes, which lead to the breakdown of this stationary nature of soliton
propagation. One of the processes of this type, which is of special importance for ultra-short
pulses, is associated with third-order dispersion (TOD) [2, 4] . Indeed, numerical simulations
have shown that solitons propagating in the presence of third-order dispersion emit continuous
radiation, experience corruption of their shape, and undergo a shift in their group velocity [5].
These effects pose a serious limitation on the performance of ultra-short pulse optical fibre
systems, and it is desirable to reduce them as much as possible.

Several authors studied the effects of TOD on pulse propagation at the zero dispersion
wavelength [6–8]. In this paper we focus our attention on the more general problem, where
the (dimensional) second-order dispersion coefficient is negative, and the fibre supports bright
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solitons. This problem was first considered by Kodama [9], who found that the TOD
perturbation leads to a shift proportional to the TOD coefficient in the group velocity of
the soliton. A more detailed analytical and numerical study of the dynamics of NLSE solitons
in the presence of TOD was performed by Elgin [5, 10, 11]. Using the result of Kodama, Elgin
employed an ‘associate field’ formalism to analyse the temporal and spectral properties of the
radiation emitted by the soliton. Specifically, theoretical predictions for the velocities of the
trailing and leading fronts of the emitted radiation were obtained and compared with the results
of numerical simulations. However, some interesting and important questions regarding the
existence of stationary pulses, the long-distance asymptotics of pulse propagation, and the
dynamics of the soliton amplitude and phase, were not addressed.

Recently, the existence and stability of stationary solutions for the NLSE in the presence
of small and non-zero TOD were assumed in [12, 13] for calculating the effects of TOD on
two-soliton collisions. In these works the stationary solutions were calculated up to the first
order in the TOD coefficient by using a singular perturbation theory around the ideal soliton
developed by Kaup [14, 15]. One of the effects found in the first order is a change in frequency
of the soliton, which is not accompanied by a respective change in the group velocity. The other
effect was a time-dependent modulation of the phase. However, the existence and stability of
the stationary solutions were not proved in [12, 13] beyond the first order. Moreover, even
for the first order, no comparison with numerical simulations was presented. Therefore, the
question of existence and stability of the stationary solutions, which is essential for obtaining
the results presented in [12, 13] for the two-soliton collision problem, remains open.

In this paper we address this important question, and present an extensive and detailed
investigation of stationary solutions in the presence of small non-zero TOD. We prove
the existence and linear stability of the stationary solutions in any finite order of Kaup’s
perturbation theory. Furthermore, we calculate the stationary solutions up to the second order,
which is essential for significantly suppressing undesirable variations in the soliton parameters.
The predictions of our theory are in very good agreement with our numerical simulations of
the NLSE with small but non-zero TOD. Finally, we discuss the possibility to obtain stationary
solutions for other types of perturbations, and suggest that such stationary pulses can be used in
optical fibre telecommunication systems to suppress radiation emission and other undesirable
effects.

The rest of this paper is organized as follows. In section 2, the stationary solutions are
calculated up to the second order in the TOD coefficient. In this section we also discuss the
properties of these solutions and prove their existence in any finite order of the perturbation
theory. In section 3, we present the results of our numerical simulations of the NLSE
and compare them with our theoretical predictions. Section 4 is reserved for discussion.
Appendix A contains the proof for the linear stability of the stationary solutions, and
appendix B gives some auxiliary calculations related to Kaup’s perturbation theory.

2. Perturbative calculation of the stationary solutions

Propagation of an electric field wave packet ψ(t, z) through an optical fibre in the presence
of small but non-zero TOD is described by the following modification of the nonlinear
Schrödinger equation (see e.g., [2], p. 44)

i∂zψ + ∂2
t ψ + 2|ψ |2ψ = id3∂

3
t ψ. (1)

Here z is the position along the fibre, t is the time in the retarded frame of reference, d3 is
the TOD coefficient, and the term id3∂

3
t ψ accounts for the effect of TOD. Note that when



Stationary solutions to the nonlinear Schrödinger equation 10041

d3 �= 0, equation (1) is not integrable. However, in many practical cases d3 � 1 [1], allowing
a perturbative calculation about the integrable d3 = 0 limit.

When d3 = 0 the most general form of the fundamental soliton solution of equation (1)
is given by [16]

ψsol(t, z) = η
exp[iα + iβ(t − y) + i(η2 − β2)z]

cosh[η(t − y − 2βz)]
(2)

where η, β, α, and y are the soliton amplitude, phase velocity, phase and position, respectively.
We call this solution the ideal soliton solution, and refer to equation (1) with d3 = 0 as the
ideal NLSE. We note that the group velocity of the ideal soliton is 2β.

Let us assume that d3 � 1, and perturbatively obtain a stationary (z-independent) solution
of equation (1). For simplicity, we assume that η = 1 and β = α = y = 0. We emphasize,
however, that the procedure described here can be easily generalized for any given values of
these parameters [13]. Making the substitution

ψ(t, z) = eiz�(t) (3)

into equation (1) we obtain an ordinary differential equation for �(t)

� ′′ − � + 2|�|2� = id3�
′′′. (4)

Since d3 � 1 we can look for solutions of equation (4) in the form of a perturbation series

�(t) = �0(t) + �1(t) + �2(t) + · · · (5)

where �0(t) = cosh−1(t) is of O(1), �1 and �2 are the O(d3) and O
(
d2

3

)
terms, respectively,

and . . . stand for higher order terms.
Substituting (5) into equation (4) and keeping terms up to the first order in d3, we arrive

at

L̂

(
�1

�1
∗

)
= id3�

′′′
0

(
1

1

)
(6)

where the linear operator L̂ is given by

L̂ = (
∂2
t − 1

)
σ̂3 +

2

cosh2(t)
(2σ̂3 + iσ̂2) (7)

and σ̂2 and σ̂3 stand for the Pauli matrices. The operator L̂ describes the evolution of linear
perturbations around the soliton solution (2) of the ideal NLSE. The complete set of the
eigenfunctions of L̂, which was obtained by Kaup [14, 15], include an infinite (continuous)
set of unlocalized modes fk and f̄ k , obeying

L̂fk = (k2 + 1)fk L̂f̄ k = −(k2 + 1)f̄ k. (8)

There are also four discrete (localized) modes, f0, f1, f2 and f3, obeying

L̂f0 = 0 L̂f1 = 0
L̂f2 = −2f1 L̂f3 = −2f0.

(9)

The explicit expressions for these eigenmodes are given in appendix B. In this appendix we
also show that small (infinitesimal) changes in the soliton parameters α, y, β and η can be
expressed in terms of the four localized eigenmodes f0, f1, f2 and f3, respectively.

It is useful to expand �̃1 in a series of the eigenmodes of L̂(
�1

�∗
1

)
= c̃1

0f0(t) + c̃1
1f1(t) + c̃1

2f2(t) + c̃1
3f3(t) +

∫ +∞

−∞

dk

2π

[
c1
kfk(t) + c1∗

k f̄ k(t)
]

(10)
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Figure 1. The time dependence of the zero, first- and second-order terms �0, �1 and �2, appearing
in the perturbative expansion (5) for the stationary solution. The solid line represents �0(t), the
dashed line stands for −i�1(t)/d3, and the dotted line for �2(t)/d

2
3 .

where subscripts denote the corresponding eigenmodes, and the superscript 1 denotes the first
order with respect to d3. The expansion of the right-hand side of equation (6) over these
eigenmodes is

id3�
′′′
0 (t)

(
1

1

)
= id3f1(t) +

d3

4

∫ +∞

−∞
dk

[
k(k + i)2fk(t)

cosh(πk/2)
− k(k − i)2f̄ k(t)

cosh(πk/2)

]
. (11)

Substituting equations (10) and (11) into equation (6), and using relations (8) and (9) we obtain
the following expressions for the expansion coefficients:

c̃1
2 = − id3

2
c̃1

3 = 0 (12)

and

c1
k = πd3k(k + i)

2(k − i) cosh(πk/2)
. (13)

The expression for �1 can be further simplified by using the explicit expressions for the
eigenmodes of L̂. This calculation yields(

�1

�∗
1

)
= c̃1

0f0(t) + c̃1
1f1(t) − id3t

2 cosh(t)

(
1

−1

)
− id3

2
I (t)

(
1

−1

)
(14)

where the function I (t) is given by

I (t) =
∫ +∞

−∞
dk

k
[
k cos(kt) tanh(t) + 1

2 (k2 − 1) sin(kt)
]

(k2 + 1) cosh(πk/2)
. (15)

The function �1(t) is shown in figure 1.
Let us discuss the properties of the first-order term �1(t). The coefficients c̃1

0 and c̃1
1 in

equation (14) correspond to O(d3) corrections to the soliton phase and position, respectively
(see appendix B). We note that these terms remain arbitrary, which is a direct result of the
fact that the eigenvalues of f0 and f1 are zero. This means that there is actually a family
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of stationary solutions, which depend on the parameter d3 (and in the general case also on
the four soliton parameters η, β, α and y). The values of the coefficients c̃1

0 and c̃1
1, which

can be fixed by the initial condition at z = 0, determine which member of the family of
stationary solutions is selected. For simplicity we choose c̃1

0 = c̃1
1 = 0 and obtain that �1(t)

is odd in time and purely imaginary. The third term on the right-hand side of equation (14)
corresponds to an O(d3) frequency change, which is not accompanied by a corresponding
change in the group velocity (see appendix B). This term is responsible for the elimination
of the O(d3) shift in the group velocity and the corresponding secular growth in the soliton
position, which are observed in the dynamical problem. The fourth term corresponds to an
O(d3) time-dependent modulation of the phase. Although this term is contributed by the
continuous spectrum eigenmodes, it is localized, i.e., it decays exponentially in t for t � 1.
Indeed, using the Residue Theorem one can show that for large t, �1(t) is given by

�1(t) = id3[(t − 3) e−t + O(e−3t )]. (16)

Since in obtaining the perturbative expansion (5) we assumed that |�0| � |�1|, and since for
large values of t |�0| ∼ e−t and |�1| ∼ d3t e−t , the solution (14) is valid only for t � 1/d3.
However, this limitation is not important in practice since for d3 � 1 both �0 and �1 are
exponentially small already at 1 � t � 1/d3.

Let us now briefly discuss the calculation of the second-order term �2(t). The linearized
form of equation (4) in this order can be written in the form

L̂

(
�2

�2
∗

)
= [id3�

′′′
1 − 2�0|�1|2]

(
1

−1

)
. (17)

We solve this equation by the same method used in the first order. That is, we first expand
�2 and the right-hand side of equation (17) in terms of a series of the eigenmodes of L̂. The
expansion of �2 is

(
�2

�∗
2

)
= c̃2

0f0(t) + c̃2
1f1(t) + c̃2

2f2(t) + c̃2
3f3(t) +

∫ +∞

−∞

dk

2π

[
c2
kfk(t) + c2∗

k f̄ k(t)
]

(18)

where the superscript 2 denotes second order with respect to d3. Substituting (18) into
equation (17) and using relations (8) and (9), we obtain

c̃2
2 = 0 c̃2

3 = 1.3306168d2
3 (19)

while the coefficients c̃2
0 and c̃2

1 remain arbitrary. The values of the coefficients c2
k are shown

in figure 2.
Figure 1 shows the second-order term �2(t) for c̃2

0 = c̃2
1 = 0. We note that this term

is even with respect to t and real. Hence, it follows that the absolute value of the stationary
solution |�| = |�0 + �1 + �2|, calculated up to the second order in d3, is symmetric with
respect to t. This is in contrast to the behaviour observed in the dynamical problem, where
the ideal soliton is taken as the initial condition. In this case the pulse acquires an asymmetric
form [5]. Indeed, a simple linear analysis shows that the asymmetric form of the pulse in the
dynamical problem is a direct result of the change in the pulse position, which is proportional
to d3z. For the stationary solution found here, the position does not change with z, and as a
result, the shape remains symmetric. It was also checked that for t � 1 this term decays like
d2

3 t2 e−t . Hence, the condition for the validity of the second order of the perturbation theory
is the same as for the first order, i.e., t � 1/d3.
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Figure 2. The real part (solid) and the imaginary part (dashed) of the coefficients c2
k , appearing in

expression (18).

Consider now the mth order of the perturbation theory. In this order the linearized form
of equation (4) becomes

� ′′
m − �m + 2�2

0 [2�m + �∗
m] = id3�

′′′
m−1 − 2

∑
i,j,k

�i�j�
∗
k δi+j+k−m (20)

where δ stands for the Kronecker delta function. In writing equation (20) it is understood that
the terms 4�2

0�m and 2�2
0�∗

m are not included in the triple sum appearing on the right-hand
side of the equation. Note the following property of equation (20). The projection of the
left-hand side of this equation on the eigenmodes f2 and f3 are zero for any m. However,
when the right-hand side of equation (20) is either imaginary and even or real and odd, it has
projections on these eigenmodes. In this case equation (20) is not valid, and the perturbation
scheme breaks down. This would correspond to the situation where in the dynamical problem
the perturbation leads to a linear dependence on z of either the soliton amplitude or its
frequency. However, we now show that in the current problem this is not the case, and in fact,
equation (20) does have a solution in any order m of the perturbation theory.

For simplicity, we first assume that the coefficients c̃i
0 = c̃i

1 are zero in any order i < m.
As we have shown earlier, �1 is odd and imaginary, while �0 and �2 are even and real. Let
us assume by induction that �i is even and real for any even i < m, and odd and imaginary
for any odd i < m. Consider first the case where m is even. In this case �m−1 is odd and pure
imaginary, and as a result, id3�

′′′
m−1 is real and even. Hence, its projections on the eigenmodes

f2 and f3 are zero. Next we note that all terms in the sum
∑

i,j,k �i�j�
∗
k δi+j+k−m are even

and real. Therefore, the projections of this term on the eigenmodes f2 and f3 are zero as well.
It follows that the stationary solution �m does exist. The proof for the case where m is odd
can be done in a similar manner. In addition, this result can be generalized for the case where
the coefficients c̃i

0 and c̃i
1 are non-zero. Indeed, c̃i

0f0(t) is even and imaginary, and c̃i
1f1(t) is

odd and real. Therefore, in this case for any i < m,�i is a sum of terms, which are either
even and real or odd and imaginary. It follows that the right-hand side of equation (20) is of
the same form, and thus, its projections on f2 and f3 are zero. We conclude that the stationary
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Figure 3. Absolute value of the optical field |ψ(t, z)| as a function of t for an initial condition in
the form of the stationary pulse (5) (dashed), and for a soliton initial condition (solid). The upper
row shows |ψ(t, z)| for d3 = 0.02 at z = 10 (a) and at z = 50 (b), while the lower row shows
|ψ(t, z)| for d3 = 0.05 at z = 10 (c) and at z = 50 (d ). The insets show the same data for a wider
range of t and a smaller range of |ψ |.

solution exists in any order m of the perturbation theory. The proof for its linear stability is
given in appendix A.

3. Numerical simulations

In order to confirm the predictions of our theory we performed numerical experiments with
the NLSE in the presence of small but non-zero TOD (equation (1)). Two types of initial
conditions were considered: the stationary solution (5), calculated up to the second order in
d3 and an initial condition in the form of an ideal soliton, ψ(t, z = 0) = cosh−1(t).

We choose to utilize the split-step method with the periodic boundary conditions, which
has been used extensively in the pulse propagation problems in nonlinear optics. For the
detailed description of this technique, we refer [2, 3]. As we remarked previously, solitons
emit radiation in the presence of TOD. This radiation moves away from the solitons and
eventually interact with the artificial boundaries in a finite computational domain, which
causes severe computational errors. In order to overcome these numerical artifacts, we apply
an artificial damping at the vicinity of edges to suppress the radiation at this region. It is also
worth mentioning that the size of the computational domain needs to be large enough so that
these absorbing layers do not interfere the internal solutions. Here, we take the computational
boundary −L � t � L with L = 200.

The dynamical evolution of the optical field ψ(t, z) under equation (1) is illustrated in
figure 3, for the two types of initial conditions, and for two different values of d3: d3 = 0.02
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Figure 4. The pulse amplitude, defined as the value of |ψ(t, z)| at its maximum, as a function of z.
The dashed and solid lines correspond to an initial condition in the form of the stationary solution
for d3 = 0.02 and d3 = 0.05, respectively. The circles and squares correspond to a soliton initial
condition with d3 = 0.02 and d3 = 0.05, respectively.

and d3 = 0.05. It is shown that for both values of d3 the position of the stationary pulse
remains approximately unchanged, whereas the soliton position changes significantly with z.
In addition, as can be seen from the insets of figure 3, the shape of the stationary solution
remains approximately unchanged, while the soliton develops the well-known asymmetric
radiative tail. We note that the radiative tail of the soliton decreases with increasing distance
along the fibre. It should also be noted that for d3 = 0.05 a careful examination of the
data shows that the stationary solution does develop an asymmetric radiative tail, which also
decreases with z. However, this tail is of order d4

3 , i.e., it is a result of the fact that the stationary
solution was calculated only up to the second order in d3. For d3 = 0.02 this tail is too small
to be captured in the simulation.

The evolution of the pulse amplitude with distance z along the fibre is presented in
figure 4. Here, we remark that the pulse amplitude is defined as the value of |ψ(t, z)| at its
maximum, and in general it is different from the ideal soliton amplitude η. One can see that
the amplitude of the stationary pulse remains constant up to O

(
d4

3

)
corrections, resulting from

the fact that the stationary solution was calculated only up to O
(
d2

3

)
. It is also shown that the

soliton amplitude oscillates, and the amplitude of these oscillations is proportional to d2
3 and

decreases with z. Note that since �1 in equation (14) is pure imaginary, one has to calculate
�2 in order to suppress the oscillations of the stationary pulse amplitude.

Figure 5 shows the position of the pulse y as a function of distance along the fibre z for
the two types of initial conditions and for the values of d3 = 0.02 and 0.05, respectively. Here,
we use the centre of the mass as the numerical definition of the pulse position. That is, we
calculate

∫
dt[|ψ(t, z)|t/ ∫

dt |ψ(t, z)|] and the integrations are performed in the vicinity of
the point where |ψ(t, z)| attains its maximum. One can see that the position of the stationary
pulse remains approximately unchanged, while the soliton position grows like ∼d3z. This
latter behaviour corresponds to a shift proportional to d3 in the soliton group velocity [5, 9]. A
more careful numerical study of y(z) for the stationary pulse dynamics shows that it grows like
∼d3

3z. A similar analysis for the pulse phase α is shown in figure 6. While the soliton phase
grows with z like d2

3z, the phase of the stationary pulse remains constant up to corrections of
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Figure 5. Position of the pulse y as a function of distance along the fibre z. The dashed and
solid lines correspond to an initial condition in the form of the stationary solution for d3 = 0.02
and d3 = 0.05, respectively. The circles and squares correspond to a soliton initial condition with
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Figure 6. The pulse phase α as a function of distance along the fibre z. The dashed and solid
lines correspond to an initial condition in the form of the stationary solution for d3 = 0.02 and
d3 = 0.05, respectively. The circles and squares correspond to a soliton initial condition with
d3 = 0.02 and d3 = 0.05, respectively.

order d3
3z or higher. Again we note that to obtain such a suppression of the change of phase,

one has to calculate the stationary solution up to the second order in d3.
We conclude this section by pointing out that our numerical simulations also test the linear

stability of the stationary pulses. Indeed, since the initial stationary pulses were calculated
only up to the second order in d3, the evolution of the pulses is in fact subject to a perturbation
of order d3

3 . The fact that no instability is observed in the simulations is in agreement with our
prediction for linear stability of these pulses.
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4. Discussion

We investigated stationary solutions of the nonlinear Schrödinger equation in the presence
of small but non-zero third-order dispersion. We calculated these solutions up to the second
order in the third-order dispersion coefficient by using a singular perturbation theory around
the ideal soliton. Moreover, we proved the existence and linear stability of the stationary
solutions for any finite order of the perturbation theory. The results obtained by our numerical
simulations of the nonlinear Schrödinger equation are found to be in very good agreement
with the predictions of our theory.

Let us discuss the implications of our results for a typical short pulse optical fibre
system. The relation between the pulse width τ0, the dimensional second- and third-order
dispersion coefficients β2 and β3, respectively, and the dimensionless TOD coefficient d3 is
d3 = −β3/(3β2τ0). For τ0 = 0.4 ps and β2 = −2 ps2 km−1, β3 = 0.12 ps3 km−1 corresponds
to d3 = 0.05, and β3 = 0.048 ps3 km−1 corresponds to d3 = 0.02. As we have seen in
the previous section, by launching a pulse which is stationary up to the second order in d3

(instead of an ideal soliton), it is possible to reduce the effects of amplitude oscillations and
z-dependent position shift by a factor of d−2

3 = 400 and d−2
3 = 2500 for the two short pulse

systems, respectively. Launching such a stationary pulse also results in a reduction in the
z-dependent phase shift by at least a factor of d−1

3 = 20 and d−1
3 = 50 for the aforementioned

systems. It was also found in [12, 13] that the intensity of radiation emitted as a result of a
collision between two such stationary pulses, belonging to two different frequency channels,
is proportional to d2

3 (�β)−4, where �β is the frequency difference between the two channels.
Since in real optical fibre systems we find �β−1 � 1, this latter result means that the intensity
of the collision induced radiation is of sixth combined order in the two small parameters d3

and �β−1, i.e., it is very small.
We note that the results obtained in this work are in accordance with the robustness

conjecture by Menyuk [17]. According to this conjecture, Hamiltonian deformations of the
NLSE, such as third-order dispersion, lead to radiation emission, corruption of shape, change
in the soliton parameters, but not to the complete destruction of the solitons. However, this
robustness conjecture was justified based on two additional hypotheses, and not derived from
first principles. In this study we were able to explicitly calculate the form of the stationary
solutions with account of TOD, to prove the existence and stability of these solutions, and to
confirm these predictions by numerical simulations.

We should also point out that some authors suggested to identify the radiation emitted
by solitons propagating in the presence of TOD as Cherenkov radiation [18]. However, it is
known that when the soliton velocity is smaller than the minimum phase velocity of the linear
waves in the medium, or larger than the maximum phase velocity of these linear waves, the
condition for emission of Cherenkov radiation is not satisfied, and solitons can exist [19]. From
equation (8) it follows that in the current problem the phase velocity of the linear waves will
be given by (k2 + 1)/k, while the TOD induced velocity is proportional to d3. Hence,
for sufficiently small d3 the condition for emission of Cherenkov radiation is not satisfied
and solitons can exist. Moreover, the O(1) gap between the eigenvalues of the continuous
spectrum eigenmodes and the four localized eigenmodes (cf equation (8) with equation (9))
guarantees that this result remains valid for the stationary solutions (5) in any finite order of
the perturbation theory, provided d3 is small enough.

It was mentioned in section 3 that for the case of soliton propagation, the TOD induced
radiative tail and amplitude oscillations decrease with increasing z. Therefore, an interesting
question concerns the asymptotic form of |ψ(t, z)| for z � 1, and its relation to the stationary
solution reported here. It is also worth mentioning that the third-order dispersion is not the
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only effect which breaks the stationary nature of soliton propagation in optical fibres. Indeed,
other destructive effects such as Raman scattering and self-steepening can also lead to emission
of radiation, corruption of the pulse shape and change of the soliton parameters. It will be
interesting to see if one can find stationary pulses in the presence of such perturbations. We
hope that this study will motivate experimental efforts to realize such stationary pulses.
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Appendix A. Linear stability of the stationary solution

In this appendix we prove the linear stability of the stationary solution in any finite order m of
the perturbation theory. For this aim we consider a small perturbation on top of the stationary
solution, calculated up to order dm

3

�(t;m) = �0(t) + �1(t) + · · · + �m(t). (A1)

We substitute into equation (2) a solution of the form

�̃(t, z) = [�(t;m) + v(t, z)] exp(iz + iα) (A2)

where, |v(t, z)| � |�m(t)|. Keeping only linear terms in v we obtain

i∂zv +
[
∂2
t v − v + 2�2

0 (2v + v∗)
] − id3∂

3
t v + 4

∑
i,j

�i�
∗
j v + 2

∑
i,j

�i�jv
∗ = 0. (A3)

In writing equation (A3) it is understood that the terms 4�2
0v and 2�2

0v∗ are not included in
the double sums appearing on the left hand side of the equation. Combining this equation with
the corresponding equation for v∗ we arrive at

i∂z

(
v

v∗

)
+ L̂tot

(
v

v∗

)
= 0, (A4)

where L̂tot is defined by

L̂tot = L̂ − id3Î ∂3
t +

m∑
l=1

L̂l (A5)

and Î is the unit matrix. Assuming that c̃l
0 = c̃l

1 = 0 for any l � m, the operators L̂l appearing
in equation (A5) are given by

L̂l = 4


|�l/2|2 +

∑
i �=j

�i�
∗
j δi+j−l


 σ̂3 + 2i


�2

l/2 +
∑
i �=j

�i�jδi+j−l


 σ̂2 for even l (A6)

and

L̂l = 4


∑

i �=j

�i�jδi+j−l


 σ̂1 for odd l. (A7)

It is now straightforward to show that the operator L̂tot satisfies the relation

σ̂1L̂totσ̂1 = −L∗
tot (A8)

from which it follows that its eigenvalues are real. Thus, the stationary solution is linearly
stable in any finite order m of the perturbation theory. The generalization of this proof for the
case where the coefficients c̃l

0 and c̃l
1 are non-zero is straightforward.
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Appendix B. The eigenmodes of the operator L̂

In this appendix we give the explicit formulas for the eigenmodes of the linear operator L̂, as
found by Kaup [14, 15]. We also show that small (infinitesimal) changes in the four parameters
of the soliton can be expressed in terms of the four discrete eigenmodes of this operator. We
then explain how we use these four expressions to identify terms on the right-hand side of
equation (14) with small corrections to the soliton parameters.

The four localized eigenmodes of L̂ are given by

f0(t) = 1

cosh(t)

(
1

−1

)
(B1)

f1(t) = tanh(t)

cosh(t)

(
1

1

)
(B2)

f2(t) = t

cosh(t)

(
1

−1

)
(B3)

and

f3(t) = t tanh(t) − 1

cosh(t)

(
1

1

)
. (B4)

The unlocalized eigenmodes of L̂ are given by

fk = exp[ikt]

{
1 − 2ik exp[−t]

(k + i)2 cosh[t]

}(
0

1

)
+

exp[ikt]

(k + i)2 cosh2[t]

(
1

1

)
(B5)

and

f̄ k = exp[−ikt]

{
1 +

2ik exp[−t]

(k − i)2 cosh[t]

} (
1

0

)
+

exp[−ikt]

(k − i)2 cosh2[t]

(
1

1

)
(B6)

where k runs from −∞ to +∞.
Consider the general form of the fundamental soliton solution of the ideal NLSE with

β = 0 (see equation (2))

ψsol = η exp(iα + iη2z)

cosh(x)
(B7)

where x = η(t − y). Let us denote

ψ̃ sol = η

cosh(x)
(B8)

and calculate the infinitesimal changes δψ̃ sol originating from infinitesimal changes in α, y, β

and η. For δα � 1 and δy � 1 we obtain(
δψ̃ sol

δψ̃∗
sol

)
δα

= iηδαf0(x) (B9)

and (
δψ̃ sol

δψ̃∗
sol

)
δy

= η2δyf1(x) (B10)

respectively. From equations (B9) and (B10) it follows that the eigenmodes f0 and f1 are
associated with small changes in α and y, respectively. For δβ � 1 we obtain(

δψ̃ sol

δψ̃∗
sol

)
δβ

= iδβf2(x) + 2ηzδβf1(x). (B11)
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The first term on the right-hand side of equation (B11) originates from a small change in β in
the argument of the exponential factor in (B7). Therefore, it corresponds to a change in the
soliton frequency. The second term on the right-hand side of equation (B11) comes from a
small change in β in the variable x defined above, and corresponds to a change in the group
velocity of the soliton. For δη � 1 we obtain(

δψ̃ sol

δψ̃∗
sol

)
δη

= −δηf3(x) + 2iη2zδηf0(x). (B12)

The first term on the right-hand side of this equation corresponds to a change in the soliton
amplitude. The second term, which originates from a small change in η in the argument of
the exponential factor in (B7), corresponds to a z dependent change in the soliton phase.

We can now use relations (B9)–(B12) to identify terms appearing on the right-hand side
of equation (14) with O(d3) corrections to the soliton parameters. For this aim we compare
the right-hand side of equation (14) with the right-hand sides of relations (B9)–(B12). We
note that, while relations (B9)–(B12) describe the z dependent evolution of an ideal soliton
under some perturbation, the terms on the right-hand side of equation (14) are independent of
z by construction. In other words, equation (14) does not contain any z dependent terms such
as 2ηzδβf1(x) or 2iη2zδηf0(x).

The first term on the right-hand side of equation (14) has the same form as the term on
the right-hand side of equation (B9). We therefore identify the coefficient c̃1

0 as corresponding
to an O(d3) correction to the soliton phase. In the same manner, by comparing the second-
order term on the right-hand side of equation (14) with the term on the right-hand side of
equation (B10) we conclude that the coefficient c̃1

1 corresponds to an O(d3) correction to the
soliton position. The third term on the right-hand side of equation (14) has the same form as
the first term on the right-hand side of equation (B11). Thus, we identify this term as an O(d3)

correction to the soliton frequency. Since equation (14) does not contain any z-dependent
terms, this correction to the frequency is not accompanied by any O(d3) change in the group
velocity.
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